
INTRO TO R PROGRAMMING
R Tutorial (RSM358) – Session 1

January 15, 2026 Prepared by Jay Cao / MDAL

Website: https://rmdal.github.io/r-intro-2026-winter/

https://www.rotman.utoronto.ca/faculty-and-research/education-labs/management-data-and-analytics-lab/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/
https://rmdal.github.io/r-intro-2026-winter/

What’s R?

• R = a language + an eco-system
• A free and open-source programming language

• An eco-system of many high-quality user-contributed libraries/packages

• In the past R is mostly known for its statistical analysis toolkits

• Nowadays R is capable of (and very good at) many other tasks
• Tools that facilitates the whole data analysis workflow

• Tools for web technology (e.g., web scraping, web app/dashboard
development, etc.)

• Many more…

What can R do – Statistics & related

• Statistics & Econometrics
• Regressions
• Time series analysis
• Bayesian inference
• Survival analysis
• …

• Numerical Mathematics
• Optimization
• Solver
• Differential equations
• …

• Finance
• Portfolio management

• Risk management

• Option pricing

• …

• Machine learning
• …

• see R Task View for more

https://cran.r-project.org/web/views/Econometrics.html
https://cran.r-project.org/web/views/NumericalMathematics.html
https://cran.r-project.org/web/views/NumericalMathematics.html
https://cran.r-project.org/web/views/Finance.html
https://cran.r-project.org/web/views/Finance.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/

What can R do – Graphics

…

Ref: 1) https://www.r-graph-gallery.com/
 2) https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/;

https://r-graph-gallery.com/
https://r-graph-gallery.com/
https://r-graph-gallery.com/
https://r-graph-gallery.com/
https://r-graph-gallery.com/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/

Plan for Session 1

• Get started
• Install R & RStudio
• Create a project
• Navigate RStudio
• Install and load R packages

• Walk through chapter 2 lab from your textbook

• R programming basics (optional)
• Expression and assignment
• Basic data structures
• Basic programming structures & functions

Setup R (Install R & its Coding Environment)

• R & RStudio on your local computer
• Install R (https://www.r-project.org/)

• Install RStudio (https://posit.co/download/rstudio-desktop/)

• R & RStudio in the Cloud (run R without installation)
• Option 1: RStudio at UofT JupyterHub (https://datatools.utoronto.ca/)

• Option 2: RStudio Cloud (https://posit.cloud/)

Our Choice

Backup Options

Note. In this workshop, we will occasionally use R in Google Colab (https://colab.research.google.com/), a
notebook coding environment in the cloud.

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://datatools.utoronto.ca/
https://posit.cloud/
https://colab.research.google.com/
https://colab.research.google.com/

Create New Project – A Good Practice

Navigate RStudio

Install and Load R packages/libraries

• Install an R library (only need to install a library once)

install.packages("library_name")

• Load an R library (before you use a library)

library(library_name)

• CRAN (The Comprehensive R Archive Network)
• CRAN Task Views

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/

Plan for Session 1

• Get started
• Install RStudio
• Create a project
• Navigate RStudio
• Install and load R packages

• Walk through chapter 2 lab from your textbook

• R programming basics (optional)
• Expression and assignment
• Basic data structures
• Basic programming structures & functions

How to Do Well in Your Coding Assignment

• Read the relevant “theory” sections of your textbook

• Work through the relevant lab section of your textbook
• Most coding questions are small variations of what’s shown in the lab section

• Your excellent textbook is free (www.statlearning.com/)
• Many resources available on the textbook website (code, data, etc.)

• Install the ISLR2 R package to have all the data needed for the assignments

http://www.statlearning.com/
https://www.statlearning.com/resources-second-edition
https://cran.r-project.org/web/packages/ISLR2/index.html

Lab Code From Your Textbook

• Pure R code (.R files) in RStudio

• R Markdown (.Rmd files) in RStudio
• Markdown text + code in pure text format

• The textbook resource site also provides rendered html file

• R Jupyter Notebook (.ipynb files) in Google Colab (or Jupyter Lab, etc.)
• Markdown text + code in special Jupyter notebook format

Textbook resource site: https://www.statlearning.com/resources-second-edition

https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition

Chapter 2 Lab Walk Through Prep

• Textbook Resource Site
• https://www.statlearning.com/resources-second-edition

• Pure R (.R file) in RStudio (recommended; R Markdown optional)

• Download the Auto data and/or install the ISLR2 package

• R Jupyter Notebook (.ipynb) in Google Colab (optional)
• installed.packages()

• if (!require(ISLR2)) install.packages(“ISLR2")

https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition
https://www.statlearning.com/resources-second-edition

Plan for Session 1

• Get started
• Install RStudio
• Create a project
• Navigate RStudio
• Install and load R packages

• Walk through chapter 2 lab from your textbook

• R programming basics (optional)
• Expression and assignment
• Basic data structures
• Basic programming structures & functions

Expression and Assignment

expression

2 + sqrt(4) + log(exp(2)) + 2^2

assignment

x <- 3

y <- (pi == 3.14)

R Data Structure - Overview

Homogeneous Heterogeneous

1-d Atomic vector List

2-d Matrix Data frame

n-d Array

http://adv-r.had.co.nz/Data-structures.html

http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html

R Data Structure - Overview

Homogeneous Heterogeneous

1-d Atomic vector List

2-d Matrix Data frame

n-d Array

http://adv-r.had.co.nz/Data-structures.html

http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html
http://adv-r.had.co.nz/Data-structures.html

Atomic Vectors

create R vectors

vec_character <- c("Hello,", "World!")

vec_integer <- c(1L, 2L, 3L)

vec_double <- c(1.1, 2.2, 3.3)

vec_logical <- c(TRUE, TRUE, FALSE)

Hello, World!

1 2 3

1.1 2.2 3.3

TRUE TRUE FALSE

List

create an R list

l1 <- list(

 1:3,

 "a",

 c(TRUE, FALSE, TRUE),

 c(2.3, 5.9)

)

ref. https://adv-r.hadley.nz/vectors-chap.html#list-creating

https://adv-r.hadley.nz/vectors-chap.html#list-creating
https://adv-r.hadley.nz/vectors-chap.html#list-creating
https://adv-r.hadley.nz/vectors-chap.html#list-creating
https://adv-r.hadley.nz/vectors-chap.html#list-creating
https://adv-r.hadley.nz/vectors-chap.html#list-creating
https://adv-r.hadley.nz/vectors-chap.html#list-creating
https://adv-r.hadley.nz/vectors-chap.html#list-creating

Data Frame

create a data frame

df1 <- data.frame(

 x = 1:3,

 y = letters[1:3],

 z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

Data Frame

create a data frame

df1 <- data.frame(

 x = 1:3,

 y = letters[1:3],

 z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

Data Frame

create a data frame

df1 <- data.frame(

 x = 1:3,

 y = letters[1:3],

 z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

A Cousin to Data Frame - Tibble

load tibble library (part of tidyverse lib)

library(tibble)

create a tibble

tb1 <- tibble(

 x = 1:3,

 y = letters[1:3],

 z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

https://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame

https://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame
https://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame
https://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame

Programming Structure: Control Flows

Sequential

• Example: Sum of Squares

෍

𝑡=1

3

𝑡2

sum of squares

t <- 1:3

y <- sum(t^2)

print(y)

Sequential

• Example: Sum of Squares

෍

𝑡=1

3

𝑡2

sum of squares

t <- 1:3

y <- sum(t^2)

print(y)

1 2 3t

Sequential

• Example: Sum of Squares

෍

𝑡=1

3

𝑡2

sum of squares

t <- 1:3

y <- sum(t^2)

print(y)

1 2 3t

1 4 9t^2

14sum(t^2)

Conditional (if…else…)

if (cond) {

 # run here if cond is TRUE

} else {

 # run here if cond is FALSE

}

y greater than 10?

if (y > 10) {

 print("greater than 10")

} else {

 print("less or equal to 10")

}

Conditional (if…else…)

if (cond) {

 # run here if cond is TRUE

} else {

 # run here if cond is FALSE

}

y greater than 10?

if (y > 10) {

 print("greater than 10")

} else {

 print("less or equal to 10")

}

y>10?

“great…” “less…”

T F

Conditional (if…else if…else…)

if (cond1) {

 # run here if cond1 is TRUE

} else if (cond2) {

 # run here if cond1 is FALSE but cond2 is TRUE

} else {

 # run here if neither cond1 nor cond2 is TRUE

}

Iteration

for (var in seq) {

 do something

}

while (cond) {

 do something if cond is TRUE

}

sum of squares

t <- 1:3

y <- 0

for (x in t) {

 y <- y + x^2

}

print(y)

Programming Structure: Functions

• What’s a function
• a logical block of code
• input -> output

• Why write functions
• Reusability
• Abstraction
• Maintainability

• Example: σ𝑡=1
𝒏 𝑡2

sum of squares from 1 to n

ss <- function(n) {

 t <- 1:n

 sum(t^2)

}

calling the ss() function

print(ss(2))

print(ss(3))

Programming Structure: Functions

• What’s a function
• a logical block of code
• input -> output

• Why write functions
• Reusability
• Abstraction
• Maintainability

• Example: σ𝑡=1
𝒏 𝑡2

sum of squares from 1 to n

ss <- function(n) {

 t <- 1:n

 sum(t^2)

}

calling the ss() function

print(ss(2))

print(ss(3))

Programming Structure: Functions

• What’s a function
• a logical block of code
• input -> output

• Why write functions
• Reusability
• Abstraction
• Maintainability

• Example: σ𝑡=1
𝒏 𝑡2

sum of squares from 1 to n

ss <- function(n) {

 t <- 1:n

 sum(t^2) # return(sum(t^2))

}

calling the ss() function

print(ss(2))

print(ss(3))

Turn Ideas into Code

• Solve problems using code: three main ingredients
• 1) Data Structure (vector, list, data frame, etc.)
• 2) Programming Structure (sequential, conditional, iterative)
• 3) Algorithm (sorting, searching, optimization, modeling, etc.)
• Design to bind the above 3 together (functions, classes, design patterns, software architecture,…)

• Examples
• Generate and solve Sudoku puzzles
• Implement and backtest a trading rule/algorithm
• Import, manipulate, and model data

• For us (data analysis in RSM358), in most case,
• Data frame manipulation + sequential programming flow + modeling (using algorithm already

implemented by others)

R Learning Road Map (From Zero to Hero)

• Step 1. Basic R programming skills (Beginner)
• Data and programming structure; how to turn an idea into code;
• Book: Hands-On Programming with R

• Step 2. R Data Science skills (Intermediate)
• Data wrangling, basic modeling, and visualization/reporting; Best practice;
• Book: R for Data Science

• Step 3. Take your R Skill to the next level
• Book: Advanced R

Ref. For other free R books, check bookdown.org often

https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://r4ds.hadley.nz/
https://adv-r.hadley.nz/
https://bookdown.org/

	Slide 1: Intro to R Programming
	Slide 2: What’s R?
	Slide 3: What can R do – Statistics & related
	Slide 4: What can R do – Graphics
	Slide 5: Plan for Session 1
	Slide 6: Setup R (Install R & its Coding Environment)
	Slide 7: Create New Project – A Good Practice
	Slide 8: Navigate RStudio
	Slide 9: Install and Load R packages/libraries
	Slide 10: Plan for Session 1
	Slide 11: How to Do Well in Your Coding Assignment
	Slide 12: Lab Code From Your Textbook
	Slide 13: Chapter 2 Lab Walk Through Prep
	Slide 14: Plan for Session 1
	Slide 15: Expression and Assignment
	Slide 16: R Data Structure - Overview
	Slide 17: R Data Structure - Overview
	Slide 18: Atomic Vectors
	Slide 19: List
	Slide 20: Data Frame
	Slide 21: Data Frame
	Slide 22: Data Frame
	Slide 23: A Cousin to Data Frame - Tibble
	Slide 24: Programming Structure: Control Flows
	Slide 25: Sequential
	Slide 26: Sequential
	Slide 27: Sequential
	Slide 28: Conditional (if…else…)
	Slide 29: Conditional (if…else…)
	Slide 30: Conditional (if…else if…else…)
	Slide 31: Iteration
	Slide 32: Programming Structure: Functions
	Slide 33: Programming Structure: Functions
	Slide 34: Programming Structure: Functions
	Slide 35: Turn Ideas into Code
	Slide 36: R Learning Road Map (From Zero to Hero)

